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The possibility is examined of reducing the equations of a lamimar
boundary layer with longitudinal pressure gradient in the presence of
an equilibrium-dissociated gas to some "universal”™ system of equa-
tions.

Bagic system of equations. Transformation of vari-
ables. We shall examine the laminar boundary layer

on a body of arbitrary shape in a high-speed gas stream,

Halting the flow in a viscous boundary layer causes a
sharp temperature increase, leading to dissociation.
We shall assume that the reaction rates of dissociation
and recombination are so high that thermochemical
equilibrium is established throughout the entire bound-
ary layer, The gas in the external stream is consid-
ered to be cold and undissociated.

In this case the equations of a plane steady boundary
layer may be written in the form
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with boundary conditions

u=v=0, h=h,wheny =0,
u-»u,(x), h—»h,{x)when y - o,
4 = uy(y), h = hy(y) when x = x, 2)

where uy(y) and hy(y) are given distributions of velocity
and enthalpy at some initial section of the boundary lay-
er with abscissa x,, and I = I(p, h) is a function which
may be written, for a binary mixture, in the form
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Applying the Dorodnitsyn transformation, modified
according to Lees for the longitudinal coordinate, to
the system (1),
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where p,, i are arbitrary constant values of density
and dynamic viscosity, and introducing a stream func-
tion ¢ according to the relation
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we write the system (1), (2) in the form
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where vy = /o, is the dynamic viscosity.
The function N is determined as follows:

N =pououpe V=1 when n =0

N >0, 10,/0, e = N (s} When n— .

The momentum equation, which is easily obtained
from (4), may be written in one of the following forms,
no different from that of the momentum equation for
an incompressible fluid (here and below the prime de-
notes differentiation with respect to s):
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if the conventional boundary layer thicknesses A* (dis-
placement thickness) and A** (momentum thickness)
are introduced in the form
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It is assumed in (5) and (6) that
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Fig. 1. Dependence of N = pu/pwiw (1) and density

ratio G = p,/p (2) on the diménsionless enthalpy R at

Mo = 19.4, hw = 0,0152: 1), 2) according to (13},

(14); a), b), c) from tables of thermodynamic func-

tions of air, with p equal to 1074 Pa, 0.35 pg, and
10 pg respectively,

Following [1], we shall go over in (4) to the new
variables
s s, 5= Bn/A%®

. D= Byu A F-=hh, (8)

where B is some normalizing multiplier.

Using (8), we obtain the following system of two
differential equations for the "reduced" stream func-
tion & and the dimensionless enthalpy h:
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ad —
b—d—-»l h—1—u(s) when g — oo,

D = Dy (5), & = hy(E) when s = s,

Equation (9) contains the quantity » = ué/Zhi, given
as a function of s, which may be called the "ocal com-
pressibility factor" of the gas and may be expressed
in terms of the Mach number Me = ug/ag of the flow
outside the boundary layer.

Any self-similar solutions of system (9) may be
chosen as functions ®,(£) and Eo(‘g’). We shall consider
later that ®,(£) and Ho(g) are solutions of the system
of equations describing the flow in the laminar bound-
ary layer on a flat plate (ug =const, f =0, n=n;=
=ug /2hy):
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The normalizing multiplier B is chosen such that for
a constant velocity at the edge of the boundary layer
Ue = U, system (9) converts to system (10); then

B— (dq"’ — iqi)dg: R
AT d P
0

We shall determine the functions N, pe/p, I, Pr
which depend on the thermodynamic and transport prop-
erties of an equilibrium-dissociated gas.

Assumptions and approximation formula, The Pr
and Le numbers depend weakly on temperature up to
temperatures of the order of T = 9000° X [2], and we
shall therefore consider them to be constant; in addi-
tion, we shall take the Lewis number to be unity (Le =
= 1). Calculation shows that this approximation is
quite acceptable for equilibrium dissociation [2]. With
this assumption, from (3), I = 0, The Prandtl number
is assumed to be 0.712 in the calculations that follow.

Main Characteristics of the Boundary Layer as a Function of the
"Local Compresmblhty Factor " with f; =0
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The quantities N = pu/pywitw and pe/p are, in gen-
eral, functions of the dimensionless enthalpy and the
pressure.

For large M, in a dissociated gas the quantity pu
changes strongly through the boundary layer, and N
cannot be regarded as constant,

The viscosity of air in equilibrium is well described
up to about T = 4000° K by the Sutherland formula

Wity = (T/T ) (T + UZIOAT+112°K). (1)

At T > 4000° K Eq. (11) will give values that are
somewhat low, An appropriate correction may be ap-
plied, for instance, on the basis of Hansen's paper [3].

In the density ratio appearing in (9) we separate out
the factor pg/py, which depends only on conditions in
the external flow:

Pe _ P 01 (12)
¢ Prop

The density ratios py/p and p/py, (when T = Ty, =
= const) may be determined from tables of thermody-
namic functions of air as a function of i and p. The
following approximate formulas may be put forward
for N and pi/p over the wide pressure range 1074 <
=< p/py = 10 (where p, is atmospheric pressure):

N=N ()= Vle/E , (13)

_ _ 0 3 4
PI/P =G(h) =aq,h -+ ah +‘aah +ah, (14)

where the coefficients a depend on the Mach number
of the undisturbed stream. It may be seen from Fig. 1
that these approximations provide satisfactory accu-
racy (the maximum error does not exceed 15%).

Using (12) and (14), the density ratio pg/p in (9)
may be written in the form

p./n =G H)/G(1—x), (15)

where we have put

G(1 —n) = a (1 —x) -+ e (1 — %) +as (1 —x)® 4 ay (1 —x)t,

% = u/2hy = n(s).

Conversion of (9) to "universal® form. The solution
of (9) will depend on the specific form in which the ve-
locity at the edge of the boundary layer is assigned, as
well as on a number of constant parameters (M, Pr,
hw). The system (9) may be made independent of the
velocity distribution at the outer edge of the boundary
layer, using the method suggested by Loitsyanskii [1]
of making the boundary layer equations universal, on
the basis of conversion of the parameters expressing
the external flow conditions into a number of indepen-
dent variables.

- Let us introduce the infinite system of parameters

fo= U220y, fy=ul " ulP 2 R = 1,2.0),
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" where f; =% is the local compressibility factor, and

fir &=1,2...) are parameters expressing the shape
of the body; when k = 1 we have f; = ugA**?/y, the
known shape factor of boundary layer theory. Carry-
ing out the substitution of variables in system (9)

O\ de 0 dn 0
d = ds "ds ox
and taking into account that
CHNCLI S
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we arrive at the following "universal®™ system of equa-
tions
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h=h,()when f, == %, = u%/2hy; fi=[r- .. =0, (16)
where &, (£) and hy(¢) are solutions of the self-similar
system (10), and the functions G(h), G(1 — %), N()
are determined according to formulas (11)-(15).

The final solution of each specific problem with its
given velocity distribution ug = ug(s) at the outer edge
of the boundary layer requires integration of the ordi-
nary differential equation of first order
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where, according to (6) and (7),
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Approximate solutions of the "universal® system of
equations. Numerical solution of the "universal® sys-
tem of equations for a !arge number of parameters
presents insurmountable computational difficulties.

In solving (16) we must be content with the minimum
possible number of independent variables.

Functions & and h of (16) depend on a combination
of the arguments £, f; =% =ub/2hy, f; = ugz**, The
first in importance after £ in the series of arguments
is the local compressibility factor #, then comes the
system of boundary layer shape factors determined by
successive derivatives of the velocity at the edge of
the boundary layer.

The method of successive approximations may be
suggested as a method of solving (16). In the first ap-
proximation we put all the fj = 0, Then all the deriva-
tives with respect to n automatically vanish, and »
may be regarded as a parameter. In this approxima-
tion the system of equations (16) reduces to (10), and
the parameter » should be given a discrete number of
values in the range (0 = v < 1),

The system (10) was integrated by the Runge-Kutta
method on an electronic computer with the following
values of the constant parameters: Pr = 0,712, hy, =
= 0.0152 (cooled wall), Tabulated’values of the func-
tions &4 (£) and Eo(g) and their derivatives resulted
from the solution. The table presents values of the

02(D0)
08 Jio

reduced friction coefficient at the wall ; =B (

\ /%

and the reduced heat flux to the wall {; = B( ‘;h&o ) ,
: »

as well as the quantities F; and Hy as a function o
parameter %. ‘

It may be seen from an examination of the table and
the graphs of Figs. 2a and b that the influence of the
parameter ® on the quantities g, g(’," and on the veloc-
ity profiles in the boundary layer is negligibly small.
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The quantities H; and the enthalpy distribution across
the boundary layer, on the other hand, vary sharply
with change of ®, and even the general behavior of the
enthalpy in the boundary layer changes, When w < 0.6
the enthalpy h reaches its maximum value, equal to

1 — n, at the outer edge at the boundary layer. When
% > 0.6 the enthalpy has a maximum (hpmax > 1 — %)
inside the boundary layer.

In the next approximation, putting all the fi, =0
with k = 2 in (16), we obtain a system of equations in
partial derivatives with respect to the three indepen-
dent variables £, ®, fi:
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O = —aai =0, # = h, —const when §=0,
oD

—— 1, h—~(1—x) when £~ o,.
@ =D, (E), h=h, () when x =x; fi =0,
where &4(£), hy(¢) are solutions of the system of equa~

tions (10), and %, is determined by assigning the num-
ber M.
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Fig. 2. Profiles of velocity u/ug

= 3d,/0¢ (a) and enthalpy h (b)

over the section of the boundary layer when fj = 0 and with val-
ues of the parameter . 1) 0; 2) 0.5; 3) 0.7; 4) 0.9.
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Because of the complexity of direct numerical inte-
gration of system (17) with three independent variables,
we shall discuss the possibility of an approximate solu-
tion of (17).

Let us introduce the dimensionless total enthalpy

h 4 u¥2
LR
h
and, expressing h in the second equation of system (17)
in terms of g according to the relation

L A
(o)

=

represent the energy equation in the form

a [Nw g |, F+2h 02
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g=g, when £E=0, g—-1 when §-- o,
g = g,(E) when » —x, fi - 0. (18)

It may be seen from an examination of the solution
of the "universal system® (16) in the first approxima-
tion (fi = 0 when k = 1) that the influence of the com-
pressibility factor » = n(Mg) on the reduced stream
function is inappreciable. This is evidently connected
with the fact that the effect of M, is partially allowed
for by the Dorodnitsyn transformation. It is apparent
that this influence will also be weak in relation to the
total enthalpy. If we suppose that this evaluation also
obtains when fy # 0, then to obtain an approximate so-
lution we may neglect the derivative 0& /0w, 0%®/dt9x,
3g/ow in (17) and (18).

It should be noted that the derivative 85/8% must
not be put equal to zero, since the influence of the pa-
rameter » on the dimensionless enthalpy is consider-
able.

Putting 8% /% = 0, 828 /8tdw = 0, dg/om = 0 in (17)
and (18), we then return to the enthalpy k, since the
quantities N = pp/pwuw and G = py/p appearing in the
equations of the system are functions (13) and (14) of
h. We finally have the following approximate system:
Fa2f,

28* T3 g

da [ _ o

v ] Gy [ O )J
TG —w "( CE

_F);,(dd)k * O g (320'_)

B\ d: odedf, 9, O
O Nm on] P2 ) oh
dg | Pr ag U 2B 95
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M = ();E)' =0. & i, when §=0,
IE
) .
Ji

M =y (8), e hy(E) when [ =0, (19)

where &,(¢) and 'ﬁo(é) may be taken from the solution
of (17) in the first approximation.

The solutions of system (19), being functions of the
two arguments £ and £y, will depend on a number of
constant parameters M, HW, Pr, which express the
conditions of specific problems. For each assigned
value of these parameters the solution must be ob-
tained in the whole range of variation of the parame-~
ter ®(0 = » < 1), It should be remembered here that
w is finally a known function of s, depending on the
velocity distribution at the outer edge of the boundary
layer.

The system of equations (19), written in finite dif-
ferences, was solved on an electronic computer with
the following values of the parameters:

M, - 194, h,= 0.0152, Pr=0.712 and 0

Py

In the numerical integration we chose a constant
step for the variable £:At = 0,05, and a variable step
for f1:(Afi)max = 5 * 1075, (Af)min = 0.3125 - 107,
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Fig. 3. Dependence of (a) £ and (b) ¢*
on the shape factor fy for values of pa-
rameter »®, 1) 0; 2) 0.5; 3) 0.9,
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The calculation in the direction of ¢ was done from the
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point fj = 0 to the point of separation of the boundary
I D

layer, where (=B (75?

) = (in the diffuser re-
E=0

gion, f; < 0), up to the forward stagnation point, where
F = 0 (in the nozzle region, f; > 0).

The calculations carried out showed that when f; =
# 0 all the characteristics of the boundary layer de-
pend significantly on the local compressibility factor .

It may be seen from Figs. 3a, b that when % in-
creases, the point of boundary layer separation moves
upstream, At large values of » there is even a change
in the general nature of the dependence of the reduced
heat flux to the wall ¢* on the shape factor f.

On the basis of the selution obtained we may deter-
mine values of the derivatives 3% /0w, 8h/dw and use
them to obtain a solution to (17) in the second approxi-
mation,

NOTATION

X, y— longitudihal and transverse coordinates; u, v, — longitud-
inal and transverse velocities in the boundary layer; Pr= ucp/)\is
the Prandtl number; pis the dynamic viscosity; A is the thermal con-
ductivity; cp is the specific heat of mixture at constant pressure;

p is the pressure; p is the demsity; v is the kinematic viscosity;

Le = pl)(IP/Xis the Lewis number, D is the binary diffusion co-
efficient; h is the enthalpy; b = h/hy is the dimensionless enthalpy;

hl is the stagnation enthalpy in external flow; ha, hp is the enthalpy
of atoms and molecules, respectively; g is the dimensionless total
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enthalpy; ca is the concentration of atoms; ¢ is the stream func-
tion; & is the 'reduced’ stream function; M is the Mach number;

fk is the shape factor; x is the local compressibility factor. Sub-
scripts: w is to denote conditions at the wall, e is at the outer
edge of the boundary layer, 1 is in the adiabatically and isentropi-
cally decelerated external flow,
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